当前位置: 首页 -  数码资讯 - 正文

如何让人工智能和人类医生一起,实现任何单一方都无法提供的临床效果

2019-12-14 10:26 数码资讯 莫语59°c
A+ A-

依然是数据为王

IBM公司开发的“沃森”(Watson),是第一条路径代表。它四年学习了200本肿瘤教科书、290种医学期刊和超过1500万份的文献后,尝试在14个国家的多个肿瘤治疗中心临床应用。在输入患者的年龄、性别、体重等基本情况和癌症分期、局部复发、化疗方案、病理分期、癌症转移等具体内容后,短短十多秒,沃森就会给出治疗方案,在肺癌、乳腺癌、直肠癌、结肠癌、胃癌和宫颈癌等方面为医生提供诊断建议。

万里云医疗信息科技(北京)有限公司CEO黄家祥认识一位AI医疗创业公司的创始人,刚融到几千万元投资时十分开心,但不到一年就发现,差不多一半的资金得用在数据标注上。

现阶段的AI都是弱人工智能,其主流的深度学习方法存在一个明显的缺陷,即它的过程无法描述。换句话说,AI算法的整个过程犹如一个专用的、无法打开的“技术黑箱”,所谓可用不可见。它既没有普遍的适应性,也无法拆解出具体的智能化业务规则,而且高度依赖于参与训练的海量数据。

此前的人机对战都在研发阶段,直到一年前,美国批准了第一个用于临床的医疗AI产品,它可以分析心脏核磁共振图像,准确度可与有经验的医生相媲美。进入临床,是AI向产业化迈进的一大步。

然而,AI的泡沫已然吹起,医疗能否独善其身?这将取决于研究成果能否尽快进入临床,并获得大范围应用,给医疗带来切实改进,以撑起领域公司的估值,冲破“C轮死”的魔咒。

第二条路径,AI可将复杂、高维度的医学影像数据,降维使其更易处理,因而可以快速、准确地从医学影像中发现病症的信息,辅助医生诊断。

在多个研究中,人工智能已经成功击败人类医生,但在大规模落地前,医疗人工智能还有很多课要补。行业的狂欢和泡沫,是任何一个新技术浪潮的必经之路。最后胜出的,必是那些创造了真实价值的技术和产品。

活过2018年,是很多医疗AI公司的决心。