当前位置: 首页 -  必威体育 - 正文

未来的图像识别:更大规模、自我标注

2020-05-23 05:03 必威体育 苘迷153°c
A+ A-

由于人们经常用 hashtag 来对照片进行标注,因此我们认为这些图片是模型训练数据的理想来源。人们在使用 hashtag 的主要目的是让其他人发现相关内容,让自己的图片更容易被找到,这种意图正好可以为我们所用。

未来的图像识别:更大规模、自我标注

增加训练数据量通常对图像分类模型的表现是有益,但它同样也有可能会引发新的问题,如在图像内定位物体的能力明显下降。除此之外我们还观察到,实验中最大的模型仍然没有能够充分利用 35 亿张巨大图像集的优势,这表明我们应该构建更大的模型。

未来的图像识别:更大规模、自我标注

图像识别是人工智能研究的重要领域之一,同时也是 Facebook 的一大重点关注领域。我们的研究人员和工程师希望尽最大的努力打破计算机视觉系统的边界,然后将我们的研究成功应用到现实世界的问题中。为了改进计算机视觉系统的性能,使其能够高效地识别和分类各种物体,我们需要拥有至少数十亿张图像的数据集来作为基础,而不仅仅是百万量级。

目前比较主流的模型通常是利用人工注释的单独标记的数据进行训练,然而在这种情况下,增强系统的识别能力并不是往里面“扔”更多的图片那样简单。监督学习是劳动密集型的,但是它通常能够达到最佳的效果,然而手动标记数据集的大小已经接近极限。尽管 Facebook 正在利用 5000 万幅图像对一些模型进行训练,然而在数据全部需要人工标记的前提下,将训练集扩大到数十亿张是不可能实现。

我们的研究人员和工程师想出了一个解决办法:利用大量带有“hashtag”的公共图像集来训练图像识别网络,其中最大的数据集包括 35 亿张图像以及 17000 种 hashtag。这种方法的关键是使用现有的、公开的、用户提供的 hashtag 作为标签,而不是手动对每张图片进行分类。

未来的图像识别:更大规模、自我标注

Facebook 表示,实验的成功证明了弱监督学习也能有良好表现,当然,只要数据足够多。

此外,这项研究还可以改进新产品以及现有产品中的图像识别功能带来。例如,更准确的模型可能会促进我们改进在 Facebook 上呈现 Memories(与QQ的“日迹”相似)的方式。随着训练数据集越来越大,我们需要应用弱监督学习——而且从长远来看,无监督学习会变得越来越重要。

这项研究在论文“Exploring the Limits of Weakly Supervised Pretraining”中有更详细的描述。